Critical amino acids in Escherichia coli UmuC responsible for sugar discrimination and base-substitution fidelity

نویسندگان

  • Alexandra Vaisman
  • Wojciech Kuban
  • John P. McDonald
  • Kiyonobu Karata
  • Wei Yang
  • Myron F. Goodman
  • Roger Woodgate
چکیده

The active form of Escherichia coli DNA polymerase V responsible for damage-induced mutagenesis is a multiprotein complex (UmuD'(2)C-RecA-ATP), called pol V Mut. Optimal activity of pol V Mut in vitro is observed on an SSB-coated single-stranded circular DNA template in the presence of the β/γ complex and a transactivated RecA nucleoprotein filament, RecA*. Remarkably, under these conditions, wild-type pol V Mut efficiently incorporates ribonucleotides into DNA. A Y11A substitution in the 'steric gate' of UmuC further reduces pol V sugar selectivity and converts pol V Mut into a primer-dependent RNA polymerase that is capable of synthesizing long RNAs with a processivity comparable to that of DNA synthesis. Despite such properties, Y11A only promotes low levels of spontaneous mutagenesis in vivo. While the Y11F substitution has a minimal effect on sugar selectivity, it results in an increase in spontaneous mutagenesis. In comparison, an F10L substitution increases sugar selectivity and the overall fidelity of pol V Mut. Molecular modeling analysis reveals that the branched side-chain of L10 impinges on the benzene ring of Y11 so as to constrict its movement and as a consequence, firmly closes the steric gate, which in wild-type enzyme fails to guard against ribonucleoside triphosphates incorporation with sufficient stringency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence analysis and mapping of the Salmonella typhimurium LT2 umuDC operon.

In Escherichia coli, efficient mutagenesis by UV requires the umuDC operon. A deficiency in umuDC activity is believed to be responsible for the relatively weak UV mutability of Salmonella typhimurium LT2 compared with that of E. coli. To begin evaluating this hypothesis and the evolutionary relationships among umuDC-related sequences, we cloned and sequenced the S. typhimurium umuDC operon. S....

متن کامل

Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment).

To investigate the interactions that determine DNA polymerase accuracy, we have measured the fidelity of 26 mutants with amino acid substitutions in the polymerase domain of a 3'-5'-exonuclease-deficient Klenow fragment. Most of these mutant polymerases synthesized DNA with an apparent fidelity similar to that of the wild-type control, suggesting that fidelity at the polymerase active site depe...

متن کامل

Enzyme-DNA interactions required for efficient nucleotide incorporation and discrimination in human DNA polymerase beta.

In the crystal structure of a substrate complex, the side chains of residues Asn279, Tyr271, and Arg283 of DNA polymerase beta are within hydrogen bonding distance to the bases of the incoming deoxynucleoside 5'-triphosphate (dNTP), the terminal primer nucleotide, and the templating nucleotide, respectively (Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H., and Kraut, J. (1994) Science 26...

متن کامل

A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA.

A series of base substitution and deletion mutations were constructed in the highly conserved 530 stem and loop region of E. coli 16S rRNA involved in binding of tRNA to the ribosomal A site. Base substitution and deletion of G517 produced significant effects on cell growth rate and translational fidelity, permitting readthrough of UGA, UAG and UAA stop codons as well as stimulating +1 and -1 f...

متن کامل

Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis.

When excision-deficient Escherichia coli carrying umuC or umuD alleles were exposed to visible light several hours after ultraviolet irradiation, base-pair-substitution mutations were induced in these normally non-UV-mutable bacteria. It is argued that delayed photoreversal of pyrimidine dimers removes blocks to DNA replication and allows the "survival" and expression of misincorporated bases. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012